MEF2-mediated recruitment of class II HDAC at the EBV immediate early gene BZLF1 links latency and chromatin remodeling.

نویسندگان

  • H Gruffat
  • E Manet
  • A Sergeant
چکیده

In B lymphocytes induced to proliferate in vitro by the Epstein-Barr virus (EBV), extra-chromosomal viral episomes packaged in chromatin persist in the nucleus, and there is no productive cycle. A switch from this latency to the productive cycle is observed after induced expression of the EBV BZLF1 gene product, the transcription factor EB1. We present evidence that, during latency, proteins of the myocyte enhancer binding factor 2 (MEF2) family are bound to the BZLF1 promoter and recruit class II histone deacetylases. Furthermore, we propose that latency is determined primarily by a specific and local recruitment of class II histone deacetylase (HDAC) by MEF2D to the BZLF1 gene promoter. The switch from latency to the productive cycle could be due in part to post-translational modification of MEF2 proteins and changes in the local acetylation state of the chromatin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The B-Cell Specific Transcription Factor, Oct-2, Promotes Epstein-Barr Virus Latency by Inhibiting the Viral Immediate-Early Protein, BZLF1

The Epstein-Barr virus (EBV) latent-lytic switch is mediated by the BZLF1 immediate-early protein. EBV is normally latent in memory B cells, but cellular factors which promote viral latency specifically in B cells have not been identified. In this report, we demonstrate that the B-cell specific transcription factor, Oct-2, inhibits the function of the viral immediate-early protein, BZLF1, and p...

متن کامل

Valpromide Inhibits Lytic Cycle Reactivation of Epstein-Barr Virus.

UNLABELLED Reactivation of Epstein-Barr virus (EBV) from latency into the lytic phase of its life cycle allows the virus to spread among cells and between hosts. Valproic acid (VPA) inhibits initiation of the lytic cycle in EBV-infected B lymphoma cells. While VPA blocks viral lytic gene expression, it induces expression of many cellular genes, because it is a histone deacetylase (HDAC) inhibit...

متن کامل

Protein kinase C-independent activation of the Epstein-Barr virus lytic cycle.

The protein kinase C (PKC) pathway has been considered to be essential for activation of latent Epstein-Barr virus (EBV) into the lytic cycle. The phorbol ester tetradecanoyl phorbol acetate (TPA), a PKC agonist, is one of the best understood activators of EBV lytic replication. Zp, the promoter of the EBV immediate-early gene BZLF1, whose product, ZEBRA, drives the lytic cycle, contains severa...

متن کامل

Epstein-Barr Virus MicroRNA miR-BART20-5p Suppresses Lytic Induction by Inhibiting BAD-Mediated caspase-3-Dependent Apoptosis.

UNLABELLED Epstein-Barr virus (EBV) is a human gammaherpesvirus associated with a variety of tumor types. EBV can establish latency or undergo lytic replication in host cells. In general, EBV remains latent in tumors and expresses a limited repertoire of latent proteins to avoid host immune surveillance. When the lytic cycle is triggered by some as-yet-unknown form of stimulation, lytic gene ex...

متن کامل

Nuclear CaMKII enhances histone H3 phosphorylation and remodels chromatin during cardiac hypertrophy

Calcium/calmodulin-dependent protein kinase II (CaMKII) plays a central role in pathological cardiac hypertrophy, but the mechanisms by which it modulates gene activity in the nucleus to mediate hypertrophic signaling remain unclear. Here, we report that nuclear CaMKII activates cardiac transcription by directly binding to chromatin and regulating the phosphorylation of histone H3 at serine-10....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EMBO reports

دوره 3 2  شماره 

صفحات  -

تاریخ انتشار 2002